Stark effect measurements on monomers and trimers of reconstituted light-harvesting complex II of plants.

نویسندگان

  • Miguel A Palacios
  • Stefano Caffarri
  • Roberto Bassi
  • Rienk van Grondelle
  • Herbert van Amerongen Hv
چکیده

The electric-field induced absorption changes (Stark effect) of reconstituted light-harvesting complex II (LHCII) in different oligomerisation states-monomers and trimers-with different xanthophyll content have been probed at 77 K. The Stark spectra of the reconstituted control samples, containing the xanthophylls lutein and neoxanthin, are very similar to previously reported spectra of native LHCII. Reconstituted LHCII, containing lutein but no neoxanthin, shows a similar electrooptical response in the Chl a region, but the Stark signal of Chl b around 650 nm amounts to at most approximately 25% of that of the control samples. We conclude that neoxanthin strongly modifies the electronic states of the nearby Chl b molecules causing a large electrooptical response at 650 nm stemming from one or more Chls b in the control samples. Ambiguities about the assignment of several bands in the Soret region [Biochim. Biophys. Acta 1605 (2003) 83] are resolved and the striking difference in electric field response between the two lutein molecules is confirmed. The Stark effect in the carotenoid spectral region in both control and neoxanthin-deficient samples is almost identical, showing that the neoxanthin Stark signal is small and much less intense than the lutein Stark signal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The functional significance of the monomeric and trimeric states of the photosystem II light harvesting complexes.

The main light harvesting complex of photosystem II in plants, LHCII, exists in a trimeric state. To understand the biological significance of trimerization, a comparison has been made been LHCII trimers and LHCII monomers prepared by treatment with phospholipase. The treatment used caused no loss of chlorophyll, but there was a difference in carotenoid composition, together with the previously...

متن کامل

Green plant photosystem I binds light-harvesting complex I on one side of the complex.

We report a structural characterization by electron microscopy of green plant photosystem I solubilized by the mild detergent n-dodecyl-alpha-D-maltoside. It is shown by immunoblotting that the isolated complexes contain all photosystem I core proteins and all peripheral light-harvesting proteins. The electron microscopic analysis is based on a large data set of 14 000 negatively stained single...

متن کامل

Effect of Light Acclimation on the Organization of Photosystem II Super- and Sub-Complexes in Arabidopsis thaliana

To survive under highly variable environmental conditions, higher plants have acquired a large variety of acclimation responses. Different strategies are used to cope with changes in light intensity with the common goal of modulating the functional antenna size of Photosystem II (PSII). Here we use a combination of biochemical and biophysical methods to study these changes in response to acclim...

متن کامل

The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis.

The main trimeric light-harvesting complex of higher plants (LHCII) consists of three different Lhcb proteins (Lhcb1-3). We show that Arabidopsis thaliana T-DNA knockout plants lacking Lhcb3 (koLhcb3) compensate for the lack of Lhcb3 by producing increased amounts of Lhcb1 and Lhcb2. As in wild-type plants, LHCII-photosystem II (PSII) supercomplexes were present in Lhcb3 knockout plants (koLhcb...

متن کامل

Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching.

The photosystem II (PSII) subunit S (PsbS) plays a key role in nonphotochemical quenching, a photoprotective mechanism for dissipation of excess excitation energy in plants. The precise function of PsbS in nonphotochemical quenching is unknown. By reconstituting PsbS together with the major light-harvesting complex of PSII (LHC-II) and the xanthophyll zeaxanthin (Zea) into proteoliposomes, we h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1656 2-3  شماره 

صفحات  -

تاریخ انتشار 2004